Dashboard Template Guide: Build Convert.com Experiment Reports in Looker Studio
Step-by-step template setup for visualizing Convert.com experiments using BigQuery and Looker Studio
Template Overview
This guide provides ready-to-use templates and step-by-step instructions to create professional Convert.com experiment analysis dashboards in Looker Studio. You'll get exact configurations, styling instructions, and a complete template you can duplicate and customize.
Template Package Contents
- BigQuery Data Source Template
- Dashboard Layout Template
- Chart Configuration Templates
- Calculated Field Templates
- Filter Control Templates
- Styling Guide
Part 1: Data Source Template Setup
Step 1: Create Your BigQuery Data Source
1.1. Access Data Sources
- Go to datastudio.google.com
- Click "Create" → "Data Source"
- Select "BigQuery" connector
- Choose "Custom Query" option
1.2. Copy and Customize the Template Query
-- CONVERT.COM EXPERIMENT ANALYSIS TEMPLATE
-- ⚠️ REQUIRED CUSTOMIZATIONS MARKED WITH YOUR_ PREFIX
WITH experiment_data AS (
SELECT
PARSE_DATE('%Y%m%d', event_date) AS date,
event_timestamp,
user_pseudo_id,
event_name,
-- Extract Convert.com experiment details
REGEXP_EXTRACT(
(SELECT value.string_value
FROM UNNEST(event_params)
WHERE key = 'exp_variant_string'),
r'CONV-(\d+)-\d+'
) AS experiment_id,
REGEXP_EXTRACT(
(SELECT value.string_value
FROM UNNEST(event_params)
WHERE key = 'exp_variant_string'),
r'CONV-\d+-(\d+)'
) AS variation_id,
-- 🔧 CUSTOMIZE: Replace with your actual variation IDs
CASE
WHEN REGEXP_EXTRACT(
(SELECT value.string_value
FROM UNNEST(event_params)
WHERE key = 'exp_variant_string'),
r'CONV-\d+-(\d+)'
) = 'YOUR_CONTROL_ID' THEN 'Control'
WHEN REGEXP_EXTRACT(
(SELECT value.string_value
FROM UNNEST(event_params)
WHERE key = 'exp_variant_string'),
r'CONV-\d+-(\d+)'
) = 'YOUR_VARIATION_A_ID' THEN 'Variation A'
WHEN REGEXP_EXTRACT(
(SELECT value.string_value
FROM UNNEST(event_params)
WHERE key = 'exp_variant_string'),
r'CONV-\d+-(\d+)'
) = 'YOUR_VARIATION_B_ID' THEN 'Variation B'
ELSE 'Other'
END AS variation_label,
-- 🔧 CUSTOMIZE: Replace with your conversion events
CASE
WHEN event_name = 'experience_impression' THEN 'Impression'
WHEN event_name IN (
'YOUR_PRIMARY_CONVERSION', -- e.g., 'purchase'
'YOUR_SECONDARY_CONVERSION', -- e.g., 'sign_up'
'YOUR_TERTIARY_CONVERSION' -- e.g., 'generate_lead'
) THEN 'Conversion'
WHEN event_name IN (
'YOUR_MICRO_CONVERSION_1', -- e.g., 'add_to_cart'
'YOUR_MICRO_CONVERSION_2' -- e.g., 'begin_checkout'
) THEN 'Micro-Conversion'
ELSE 'Other'
END AS event_category,
-- Revenue data
COALESCE(
(SELECT value.double_value FROM UNNEST(event_params) WHERE key = 'value'),
ecommerce.purchase_revenue,
0
) AS event_value,
-- Dimensions for analysis
device.category AS device_category,
geo.country AS country,
traffic_source.source AS traffic_source,
traffic_source.medium AS traffic_medium
-- 🔧 CUSTOMIZE: Replace with your BigQuery table path
FROM `YOUR_PROJECT.YOUR_DATASET.events_*`
WHERE
_TABLE_SUFFIX BETWEEN FORMAT_DATE('%Y%m%d', DATE_SUB(CURRENT_DATE(), INTERVAL 90 DAY))
AND FORMAT_DATE('%Y%m%d', CURRENT_DATE())
AND (
event_name = 'experience_impression'
-- 🔧 CUSTOMIZE: Add your conversion events
OR event_name IN (
'YOUR_PRIMARY_CONVERSION',
'YOUR_SECONDARY_CONVERSION',
'YOUR_TERTIARY_CONVERSION',
'YOUR_MICRO_CONVERSION_1',
'YOUR_MICRO_CONVERSION_2'
)
)
),
-- Attribution logic
user_impressions AS (
SELECT
user_pseudo_id,
experiment_id,
variation_id,
variation_label,
MIN(event_timestamp) AS first_impression_time
FROM experiment_data
WHERE event_category = 'Impression'
GROUP BY 1, 2, 3, 4
)
-- Final output for Looker Studio
SELECT
e.date,
e.experiment_id,
e.variation_id,
e.variation_label,
e.event_category,
e.event_name,
e.device_category,
e.country,
e.traffic_source,
e.traffic_medium,
-- Metrics
COUNT(*) AS total_events,
COUNT(DISTINCT e.user_pseudo_id) AS unique_users,
SUM(e.event_value) AS total_revenue,
-- Attribution
COUNT(DISTINCT CASE
WHEN e.event_category IN ('Conversion', 'Micro-Conversion')
AND e.event_timestamp >= ui.first_impression_time
THEN e.user_pseudo_id
END) AS attributed_conversions,
SUM(CASE
WHEN e.event_category IN ('Conversion', 'Micro-Conversion')
AND e.event_timestamp >= ui.first_impression_time
THEN e.event_value
ELSE 0
END) AS attributed_revenue
FROM experiment_data e
LEFT JOIN user_impressions ui
ON e.user_pseudo_id = ui.user_pseudo_id
AND e.experiment_id = ui.experiment_id
WHERE ui.user_pseudo_id IS NOT NULL
GROUP BY 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ORDER BY 1 DESC, 4
1.3. Data Source Configuration
- Name your data source: "Convert Experiment Data"
- Click "Connect"
- Configure field types as needed
- Click "Create Report"
Part 2: Dashboard Template Creation
Step 2: Set Up Dashboard Layout
2.1. Dashboard Settings
- Canvas Size: Fixed size (1600 x 1200)
- Theme: Custom (we'll configure colors below)
- Title: "Convert.com Experiment Analysis Dashboard"
2.2. Create Header Section
- Position: Top of dashboard
- Height: 80px
- Background: #f8f9fa (light gray)
Part 3: Filter Controls Template
Step 3: Implement Filter Controls
3.1. Date Range Control
Control Type: Date range control
Position: Header section, left
Size: 200px width × 40px height
Default Value: Last 30 days
Style:
- Border: 1px solid #dee2e6
- Background: white
- Font: Google Sans, 14px
Implementation Steps:
- Click "Add a control" → "Date range control"
- Position in header section
- In "Setup" tab:
- Default date range: Last 30 days
- In "Style" tab:
- Border color: #dee2e6
- Background: #ffffff
3.2. Experiment Filter
Control Type: Drop-down list
Position: Header section, center
Size: 200px width × 40px height
Control field: Experiment ID
Allow multiple selections: No
Implementation Steps:
- "Add a control" → "Drop-down list"
- Setup:
- Control field: Experiment ID
- Metric: none
- Allow multiple selections: unchecked
- Style: Match date range control
3.3. Variation Filter
Control Type: Multi-select dropdown
Position: Header section, right
Size: 200px width × 40px height
Control field: Variation Label
Part 4: Scorecard Templates
Step 4: Create Performance Scorecards
4.1. Control Scorecard Template
Chart Configuration:
Chart Type: Scorecard
Data Range: Your data source
Filters: Variation Label EQUALS Control
Position: Row 2, Left column
Size: 250px width × 150px height
Metrics Configuration:
Metric 1: Users Exposed
- Field: Unique Users
- Filter: Event Category = "Impression"
- Aggregation: Count Distinct
- Format: Number, no decimals
Metric 2: Conversions
- Field: Attributed Conversions
- Aggregation: Sum
- Format: Number, no decimals
Metric 3: Conversion Rate
- Calculation: (Attributed Conversions / Users Exposed) * 100
- Format: Percentage, 2 decimals
Styling:
Border: 2px solid #1f77b4 (blue for control)
Background: #f8f9ff
Font: Google Sans
Primary metric size: 36px
Label size: 14px
Implementation Steps:
- Add chart → Scorecard
- Setup tab:
- Metric: Unique Users
- Filter: Variation Label = "Control" AND Event Category = "Impression"
- Style tab:
- Border: 2px solid #1f77b4
- Background: #f8f9ff
- Number color: #1f77b4
- Duplicate for additional metrics
4.2. Variation A Scorecard Template
Same configuration as Control, but:
Filter: Variation Label EQUALS Variation A
Border color: #ff7f0e (orange)
Background: #fff8f0
Number color: #ff7f0e
4.3. Statistical Summary Scorecard
Chart Type: Scorecard
Metrics: Calculated fields for uplift
Position: Row 2, Right column
Size: 300px width × 150px height
Part 5: Chart Templates
Step 5: Performance Trends Chart
5.1. Daily Trend Char
Configuration:
Chart Type: Time series (line chart)
Position: Row 3, full width
Size: 1500px width × 300px height
Setup:
Date Range Dimension: Date
Breakdown Dimension: Variation Label
Metrics:
- Conversion Rate (calculated field)
- Revenue per User (calculated field)
Sort: Date ascending
Secondary axis: Revenue per User
Styling:
Control line: #1f77b4, 3px thickness
Variation A line: #ff7f0e, 3px thickness
Variation B line: #2ca02c, 3px thickness
Grid lines: #e9ecef
Background: white
Legend position: Bottom
Implementation:
- Add chart → Time series chart
- Setup:
- Date range dimension: Date
- Breakdown dimension: Variation Label
- Metric: Create calculated field for conversion rate
- Style:
- Series colors: Set as specified above
- Reference lines: Add if needed
Step 6: Conversion Funnel Template
6.1. Funnel Chart Configuration
Chart Type: Stepped area chart
Position: Row 4, Left column
Size: 500px width × 400px height
Setup:
Dimension: Event Category
Breakdown: Variation Label
Metric: Unique Users
Sort: Custom order (Impression, Micro-Conversion, Conversion)
Custom Sort Order Implementation:
- Create calculated field:
CASE
WHEN Event Category = "Impression" THEN 1
WHEN Event Category = "Micro-Conversion" THEN 2
WHEN Event Category = "Conversion" THEN 3
ELSE 4
END
Step 7: Device Performance Chart
7.1. Device Analysis Template
Chart Type: Grouped bar chart
Position: Row 4, Center column
Size: 400px width × 400px height
Configuration:
Dimension: Device Category
Breakdown: Variation Label
Metrics:
- Conversion Rate
- Revenue per User
Sort: Total users (descending)
Step 8: Geographic Analysis
8.1. World Map Template
Chart Type: Geo chart (World map)
Position: Row 4, Right column
Size: 400px width × 400px height
Setup:
Geographic dimension: Country
Color metric: Conversion Rate
Size metric: Users Exposed (optional)
Color scale: Blue to red gradient
Step 9: Data Table Template
9.1. Detailed Analysis Table
Chart Type: Table
Position: Row 5, full width
Size: 1500px width × 400px height
Columns Configuration:
1. Date (Date format)
2. Variation Label (Text)
3. Event Category (Text)
4. Device Category (Text)
5. Users (Number, no decimals)
6. Conversions (Number, no decimals)
7. Conversion Rate (Percentage, 2 decimals)
8. Revenue (Currency, 2 decimals)
9. Revenue per User (Currency, 2 decimals)
Table Settings:
Rows per page: 50
Enable search: Yes
Enable export: Yes
Show summary row: Yes
Conditional formatting: Yes (highlight top performers)
Part 6: Calculated Fields Templates
Step 10: Essential Calculated Fields
10.1. Conversion Rate Calculation
Field Name: Conversion Rate
Formula: (Attributed Conversions / CASE WHEN Unique Users = 0 THEN 1 ELSE Unique Users END) * 100
Type: Number
Default Aggregation: Auto
Implementation:
- In data source, click "Add a field"
- Name: "Conversion Rate"
- Formula: As above
- Save
10.2. Revenue per User
Field Name: Revenue per User
Formula: Total Revenue / CASE WHEN Unique Users = 0 THEN 1 ELSE Unique Users END
Type: Number (Currency)
Default Aggregation: Auto
10.3. Uplift Percentage
Field Name: Uplift vs Control
Formula:
CASE
WHEN Variation Label = "Control" THEN 0
ELSE (Conversion Rate - AVG(CASE WHEN Variation Label = "Control" THEN Conversion Rate END)) /
AVG(CASE WHEN Variation Label = "Control" THEN Conversion Rate END) * 100
END
Type: Number (Percentage)
10.4. Statistical Significance
Field Name: Significance Level
Formula:
CASE
WHEN Unique Users >= 1000 AND ABS(Uplift vs Control) >= 10 THEN "High Confidence"
WHEN Unique Users >= 500 AND ABS(Uplift vs Control) >= 15 THEN "Medium Confidence"
WHEN Unique Users >= 100 THEN "Low Confidence"
ELSE "Insufficient Data"
END
Type: Text
Part 7: Styling Template
Step 11: Consistent Styling Guide
11.1. Color Palette
Primary Colors:
- Control: #1f77b4 (Blue)
- Variation A: #ff7f0e (Orange)
- Variation B: #2ca02c (Green)
- Variation C: #d62728 (Red)
Background Colors:
- Dashboard: #ffffff (White)
- Chart backgrounds: #ffffff
- Header: #f8f9fa (Light gray)
- Control sections: #f8f9ff (Light blue)
- Variation sections: #fff8f0 (Light orange)
Text Colors:
- Primary: #212529 (Dark gray)
- Secondary: #6c757d (Medium gray)
- Success: #28a745 (Green)
- Warning: #ffc107 (Yellow)
- Danger: #dc3545 (Red)
Border Colors:
- Default: #dee2e6 (Light gray)
- Control: #1f77b4 (Blue)
- Variation: #ff7f0e (Orange)
11.2. Typography Settings
Font Family: Google Sans (primary), Roboto (fallback)
Font Sizes:
- Dashboard title: 24px, Bold
- Section headers: 18px, Bold
- Chart titles: 16px, Bold
- Metric values: 36px, Bold
- Metric labels: 14px, Normal
- Table headers: 14px, Bold
- Table data: 12px, Normal
- Filters: 14px, Normal
11.3. Spacing Guidelines
Margins:
- Dashboard margins: 20px
- Between sections: 30px
- Between charts: 20px
- Chart internal padding: 15px
Chart Dimensions:
- Scorecard: 250px × 150px
- Trend chart: 1500px × 300px
- Funnel chart: 500px × 400px
- Device chart: 400px × 400px
- Geo chart: 400px × 400px
- Data table: 1500px × 400px
Part 8: Template Implementation Checklist
Step 12: Complete Implementation Guide
12.1. Pre-Implementation Checklist
- [ ] Verify GA4 BigQuery Export is Active
-- Test query to verify data
SELECT COUNT(*) as total_events
FROM `YOUR_PROJECT.analytics_XXXXXX.events_*`
WHERE _TABLE_SUFFIX = FORMAT_DATE('%Y%m%d', CURRENT_DATE())
- [ ] Identify your event names
-- Get list of your events
SELECT event_name, COUNT(*) as event_count
FROM `YOUR_PROJECT.analytics_XXXXXX.events_*`
WHERE _TABLE_SUFFIX BETWEEN FORMAT_DATE('%Y%m%d', DATE_SUB(CURRENT_DATE(), INTERVAL 7 DAY))
AND FORMAT_DATE('%Y%m%d', CURRENT_DATE())
GROUP BY 1
ORDER BY 2 DESC
- [ ] Get your variation IDs from Convert.com
- [ ] Confirm BigQuery permissions
- [ ] Plan dashboard sharing strategy
12.2. Implementation Steps
- Create Data Source (30 minutes)
- [ ] Copy and customize BigQuery query
- [ ] Replace all YOUR_ placeholders
- [ ] Test query execution
- [ ] Configure field types
- [ ] Save data source
- Build Dashboard Framework (45 minutes)
- [ ] Create new report
- [ ] Set canvas size and theme
- [ ] Add header section
- [ ] Implement filter controls
- [ ] Test filter functionality
- Create Core Charts (60 minutes)
- [ ] Build Control scorecard
- [ ] Build Variation A scorecard
- [ ] Create statistical summary
- [ ] Add performance trend chart
- [ ] Implement funnel analysis
- Add Supporting Charts (45 minutes)
- [ ] Device performance chart
- [ ] Geographic analysis
- [ ] Traffic source breakdown
- [ ] Detailed data table
- Configure Calculated Fields (30 minutes)
- [ ] Conversion rate calculation
- [ ] Revenue per user
- [ ] Uplift percentage
- [ ] Statistical significance
- Apply Styling (30 minutes)
- [ ] Color scheme implementation
- [ ] Typography consistency
- [ ] Spacing optimization
- [ ] Mobile responsiveness test
12.3. Testing Checklist
- [ ] Data Validation
- Compare dashboard totals with GA4
- Verify attribution logic
- Check filter interactions
- Test date range changes
- [ ] Performance Testing
- Load with maximum date range
- Test with multiple simultaneous users
- Verify mobile responsiveness
- Check loading times
- [ ] User Acceptance Testing
- Share with stakeholders for feedback
- Test with different permission levels
- Verify export functionality
- Confirm scheduled reports work
12.4. Launch Checklist
- [ ] Documentation
- Create user guide
- Document customization instructions
- Establish maintenance schedule
- Plan training sessions
- [ ] Access Management
- Configure viewer permissions
- Set up editor access
- Establish owner hierarchy
- Plan access review schedule
- [ ] Monitoring Setup
- Schedule regular data quality checks
- Set up performance alerts
- Plan monthly optimization reviews
- Establish feedback collection process
Part 9: Customization Templates
Step 13: Industry-Specific Customizations
13.1. E-commerce Template Additions
-- Add to main query for e-commerce metrics
SELECT
...,
-- Product data
(SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'item_category') as product_category,
(SELECT value.int64_value FROM UNNEST(event_params) WHERE key = 'quantity') as quantity,
-- Enhanced e-commerce events
CASE
WHEN event_name = 'purchase' THEN 'Purchase'
WHEN event_name = 'add_to_cart' THEN 'Add to Cart'
WHEN event_name = 'begin_checkout' THEN 'Begin Checkout'
WHEN event_name = 'view_item' THEN 'Product View'
END as ecommerce_action
Additional Charts for E-commerce:
- Product Performance by Variation
- Shopping Funnel Analysis
- Average Order Value Comparison
- Cart Abandonment Rates
13.2. SaaS Template Additions
-- SaaS-specific metrics
SELECT
...,
-- Subscription data
(SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'subscription_type') as plan_type,
(SELECT value.int64_value FROM UNNEST(event_params) WHERE key = 'trial_days') as trial_length,
-- SaaS events
CASE
WHEN event_name = 'trial_start' THEN 'Trial Started'
WHEN event_name = 'subscription_purchase' THEN 'Converted to Paid'
WHEN event_name = 'feature_engagement' THEN 'Feature Usage'
END as saas_action
13.3. Lead Generation Template
-- Lead gen specific metrics
SELECT
...,
-- Lead data
(SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'form_name') as form_name,
(SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'lead_source') as lead_source,
-- Lead events
CASE
WHEN event_name = 'generate_lead' THEN 'Lead Generated'
WHEN event_name = 'contact_form_submit' THEN 'Contact Form'
WHEN event_name = 'newsletter_signup' THEN 'Newsletter'
END as lead_action
Part 10: Template Sharing and Collaboration
Step 14: Template Distribution
14.1. Creating Shareable Template
- Prepare Template for Sharing:
- [ ] Remove all real data (use sample data)
- [ ] Replace specific IDs with placeholders
- [ ] Add instruction annotations
- [ ] Test with sample BigQuery data
- Create Template Copy Link:
- [ ] Open dashboard
- [ ] Click "Share" → "Make a copy"
- [ ] Generate shareable link
- [ ] Test link access
14.2. Template Documentation
Create accompanying documentation:
# Convert.com Dashboard Template - Setup Guide
## Prerequisites
- GA4 BigQuery Export enabled
- Convert.com experiments running
- Looker Studio access
## Customization Required
1. BigQuery table path: Line 45 in data source
2. Variation IDs: Lines 28-35 in data source
3. Event names: Lines 40-50 in data source
4. Color scheme: Dashboard style settings
## Support
- Email: your-analytics-team@company.com
- Documentation: link-to-your-docs
- Training: link-to-training-schedule
Part 11: Troubleshooting Template
Step 15: Common Issues and Solutions
15.1. Data Issues Template
-- Diagnostic queries for troubleshooting
-- Check if Convert.com events exist
SELECT
event_date,
COUNT(*) as impression_events
FROM `YOUR_PROJECT.analytics_XXXXXX.events_*`
WHERE event_name = 'experience_impression'
AND _TABLE_SUFFIX BETWEEN FORMAT_DATE('%Y%m%d', DATE_SUB(CURRENT_DATE(), INTERVAL 7 DAY))
AND FORMAT_DATE('%Y%m%d', CURRENT_DATE())
GROUP BY 1
ORDER BY 1 DESC;
-- Verify variation ID extraction
SELECT
(SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'exp_variant_string') as raw_string,
REGEXP_EXTRACT(
(SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'exp_variant_string'),
r'CONV-\d+-(\d+)'
) AS extracted_variation_id
FROM `YOUR_PROJECT.analytics_XXXXXX.events_*`
WHERE event_name = 'experience_impression'
LIMIT 10;
-- Check conversion event coverage
SELECT
event_name,
COUNT(*) as event_count,
COUNT(DISTINCT user_pseudo_id) as unique_users
FROM `YOUR_PROJECT.analytics_XXXXXX.events_*`
WHERE event_name IN ('YOUR_CONVERSION_EVENTS')
AND _TABLE_SUFFIX = FORMAT_DATE('%Y%m%d', CURRENT_DATE())
GROUP BY 1;
15.2. Performance Issues Template
Issue: Slow Dashboard Loading
-- Optimized query template for large datasets
-- Add to your main query:
WHERE
_TABLE_SUFFIX BETWEEN FORMAT_DATE('%Y%m%d', DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY))
AND FORMAT_DATE('%Y%m%d', CURRENT_DATE()) -- Limit to 30 days
AND event_name IN ('experience_impression', 'YOUR_KEY_EVENTS_ONLY') -- Limit events
Chart Optimization Settings:
- Maximum rows displayed: 1000
- Enable data sampling: For > 500K rows
- Use extract data: For historical reports
15.3. Access Issues Template
Permission Setup Checklist:
- [ ] BigQuery dataset access
- [ ] Looker Studio sharing permissions
- [ ] Data source permissions
- [ ] Dashboard viewing rights
Template Summary
This comprehensive template package provides:
- Complete BigQuery data source with customization points clearly marked
- Step-by-step dashboard creation with exact specifications
- Ready-to-use chart configurations with styling details
- Calculated field templates for key metrics
- Color schemes and typography guidelines
- Implementation checklist for structured rollout
- Troubleshooting guides for common issues
- Industry customizations for specific business types
- Sharing and collaboration templates
Total Implementation Time: ~4 hours
- Data source setup: 30 min
- Dashboard creation: 3 hours
- Testing and refinement: 30 min
Template Benefits:
- Immediate deployment with minimal customization
- Professional appearance with consistent styling
- Comprehensive analysis covering all key metrics
- Scalable framework for multiple experiments
- Cost-effective solution using free Google tools
By following this template guide, you'll have a production-ready Convert.com analysis dashboard that rivals expensive specialized platforms, all built on free Google infrastructure with professional-grade functionality and appearance.